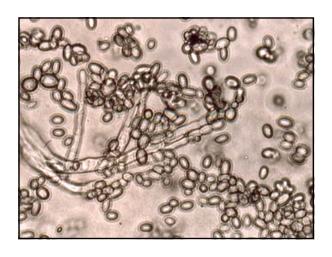
MOLD EXPOSURES & POPULATION HEALTH

J. David Miller
NSERC Chair
Fungal toxins and allergens
Carleton University
& Visiting Scientist,
Health Canada

10 year Average	Annual Burden of Fungal Spores
in Outdoor Air a	t 20m the Northern Hemisphere

Cladosporium cladosporioides & C.herbarum	55%
Ascospores	19%
Basidiospores	12%
Sporobolomyces	10%
Alternaria alternata	2%
Ustilago, Erysiphe, Helminthosporium,	
Botrytis, Tilletiopsis, Stemphylium, Epicoccum	2%
Aspergillus/Penicillium	1%

There are Population Health Effects of Molds in Outdoor Air


ca. 10% of Americans are allergic to Cladosporium

ca. 8% of emergency admissions to hospitals for asthma are associated with spores

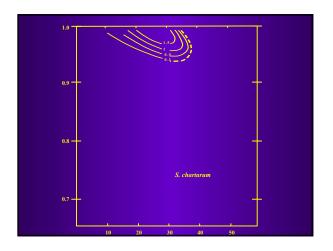
•	

Fungi from 2134 Wallboard Samples

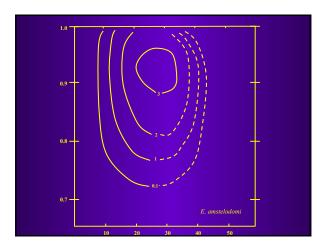
Chaetomium globosum Penicillium viridicatum Non sporulating isolates Eurotium herbariorum Penicillium aurantiogriseum Penicillium citrinum

Stachybotrys chartarum, S. chlorohalonata Aspergillus sydowii Penicillium chrysogenum

Penicillium commune


Non sporulating, clamp connections

Eurotrium repens


Memnoniella echinata

Aspergillus versicolor Paecilomyces variotii

Cladosporium sphaerospermum

SECONDARY METABOLISM

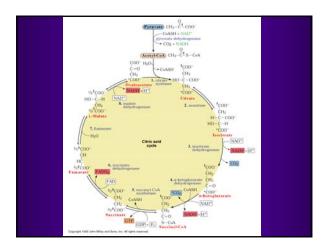
- Growth unrestrained by nutrients, pH, water and gas exchange is called "balanced growth".
- In fungi, secondary metabolites are produced when one or more of nutrients become limiting; called unbalanced growth.
- This produces pools of precursors that become available for the production of secondary metabolites.

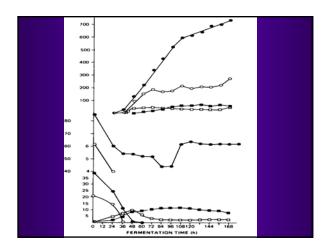
SECONDARY METABOLISM

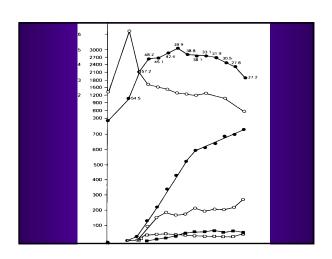
- responsible for the biosynthesis of usually complex compounds for defense
- astounding range of compounds but all are synthesized from amino acids, acetate, mevalonic acid or glutamic acid

-	

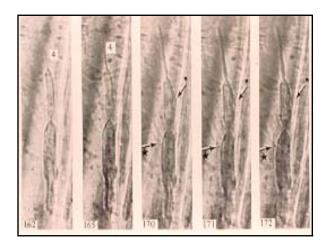
SECONDARY METABOLISM

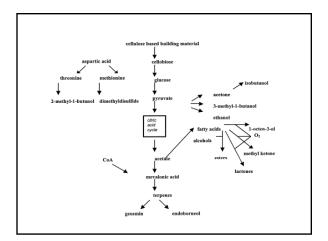

- Serious research started in the late 1930's when the need for penicillin became acute.
- Early researchers believed that these compounds had a purpose in nature. After WWII, some scientists thought that secondary metabolites were waste products or their production was a displacement activity (!).

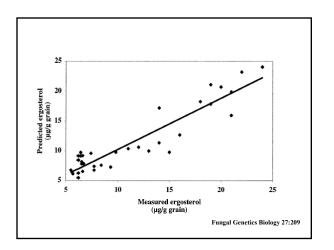

SECONDARY METABOLISM


- In plants, secondary metabolites are usually tissue-specific. Needles, leaves, seeds, where the plants have male and female forms, the female forms can have more metabolite.
- Some fungi have tissue specific secondary metabolites (spores, sclerotia).

Species/ chemotype	Atranones	Dolabellanes	Tricho- dermin	Satratoxins	Roridins	Hydroxy roridin E	Pigmen- tation
chartarum/S	ND*	ND	+	+	+	+	None
chartarum/S	ND	ND	+	+	+	+	None
chartarum/S	ND	ND	+	+	+	+	Yellow
chartarum/S	ND	ND	+	+	+	+	Yellow
chartarum/S	ND	ND	+	+	+	+	Yellow
chartarum/S	ND	ND	+	+	+	+	None
chartarum/S	ND	ND	ND	+	+	+	None
chartarum/S	ND	ND	ND	+	+	+	None
chartarum/S	ND	ND	ND	+	+	+	None
chartarum/A	+	+	+	ND	ND	ND	None
chartarum/A	+	+	+	ND	ND	ND	None
chartarum/A	+	+	+	ND	ND	ND	None
chartarum/A	+	+	+	ND	ND	ND	None
chartarum/A	+	+	+	ND	ND	ND	None
chartarum/A	+	+	+	ND	ND	ND	None
chlorokalonata	+	+	+	ND	ND	ND	Green
chlorokalonata	+	+	+	ND	ND	ND	Green
chlorohalonata	+	+	+	ND	ND	ND	Green
chlorokalonata	+	+	ND	ND	ND	ND	Green
chlorokalonata	+	+	ND	ND	ND	ND	Green
chlorokalonata	+	+	ND	ND	ND	ND	Green
chlorokalonata	+	+	ND	ND	ND	ND	Green
chlorokalonata	+	+	ND	ND	ND	ND	Green
chlorokalonata	+	+	ND	ND	ND	ND	Green
chlorokalonata	ND	ND	ND	ND	ND	ND	Green


nemotype	Atranones	Dotabellanes	aermin	Satratoxins	Koriains	roriain E	tation
artarum/S	ND*	ND	+	+	+	+	None
artarum/S	ND	ND	+	+	+	+	None
artarum/S	ND	ND	+	+	+	+	Yellow
artarum/S	ND	ND	+	+	+	+	Yellow
artarum/S	ND	ND	+	+	+	+	Yellow
artarum/S	ND	ND	+	+	+	+	None
artarum/S	ND	ND	ND	+	+	+	None
artarum/S	ND	ND	ND	+	+	+	None
artarum/S	ND	ND	ND	+	+	+	None
artarum/A	+	+	+	ND	ND	ND	None
artarum/A	+	+	+	ND	ND	ND	None
artarum/A	+	+	+	ND	ND	ND	None
artarum/A	+	+	+	ND	ND	ND	None
artarum/A	+	+	+	ND	ND	ND	None
artarum/A	+	+	+	ND	ND	ND	None
lorokalonata	+	+	+	ND	ND	ND	Green
lorokalonata	+	+	+	ND	ND	ND	Green
lorokalonata	+	+	+	ND	ND	ND	Green
lorokalonata	+	+	ND	ND	ND	ND	Green
lorokalonata	+	+	ND	ND	ND	ND	Green
lorokalonata	+	+	ND	ND	ND	ND	Green
forokalonata	+	+	ND	ND	ND	ND	Green
lorokalonata	+	+	ND	ND	ND	ND	Green
lorokalonata	+	+	ND	ND	ND	ND	Green
lorokalonata	ND	ND	ND	ND	ND	ND	Green
						Mycologia 9	5:1227

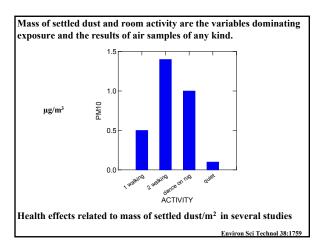




,		
•		
•		
•		

SPORE GLUCAN CONTENT **DG18 Species** MEA **CMA** CZ $0.137 \pm 0.001** 0.118 \pm 0.006 0.115 \pm 0.004 0.105 \pm 0.005$ E. herbariorum P. aurantiogriseum $0.204 \pm 0.002^{**}$ 0.170 ± 0.004 0.168 ± 0.007 0.174 ± 0.005 0.738 ± 0.01 0.736 ± 0.012 0.714 ± 0.02 SECONDARY METABOLITES **ALWAYS PRODUCED** • if fungus grows in nature • a priori species must be competitive on substrate • need to measure the toxin for the right chemotype • detection biomass dependent • adequate sensitivity Mold measures: ruler still the best · British Bengali (1990), Wallaceburg (1998) and Finnish studies (2002) showed that respiratory symptoms were associated with area of fungal

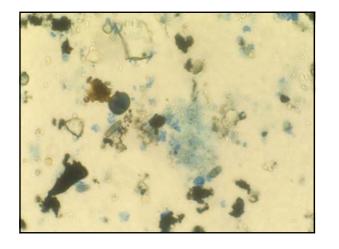
contamination/moisture damage.Population health effects could be

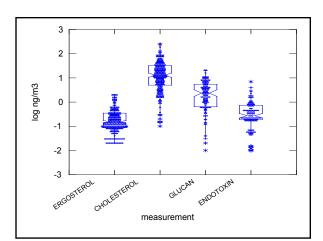

per unit floor area.

DETECTED at circa 1-3% visible mold

all media are sel	ective:	pure cul	tures	
<u> 1</u>	<u>MEA</u>	CMA	DG18	spores
S. chartarum	1	10	1	1,000
P. aurantiogriseum	20	20	25	40
W. sebi	1	1	10	20
T. harzianum	10	10	1	40

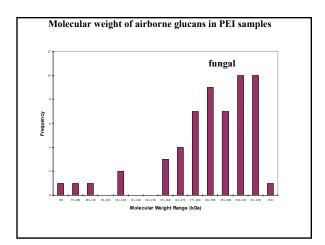
аррі	oximate half life (year
Cladosporium cladosporioides	0.1
Alternaria alternata	0.3
Fomes annosus	0.3
Stachybotrys chartarum	0.8
Aureobasidium pullulans	1
Fusarium sp.	>4
Mucor sp.	5
Neosartoya fischeri	>5
Talaromyces luteus	>6
P. camemberti	>6
Scorulopsis brevicaulis	>6
Emercella nidulans	>6
A. niger	>6
A. fumigatus	>7
Eurotium herbariorum	>7
Rhizopus nigrans	11
Aspergillus flavus	>11
A. oryzae	>11

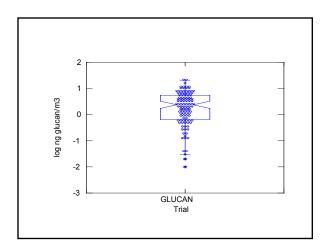

<u>></u>	.300 <u>µm</u>	<300 to >150 μm	< 150 μm
	(mg)	(mg)	(mg)
LR	865	315	678
PBR	391	134	298
CBR	122	32	241
LR	104	64	321
PBR	274	511	477
CBR	596	675	691
LR	167	84	257
PBR	178	536	164
CBR	184	1600	1308



Ergosterol & duration of samples houses % positive mean median mg/m3 401 25 0.5 (+s) 1 day 110 98 0.3 0.15 5 days proxy for room activity and dust burden

The majority of exposure to particles indoors comes from settled dusts; personal exposure time/activity dependent.


•		
•		
•		
•		
•		
•		



The exposure to particles indoors is much more than just fungal materials.

Fungal materials as % of glucan		
• 30% intact spores		
• 30% hyphal and spore fragments		
 40% something else much smaller -small amount is yeast glucan 		
The fungal component of the exposure is more than to intact spores.		